Optimal Exponent Heat Balance and Refined Integral Methods Applied to Stefan Problems

نویسنده

  • T. G. MYERS
چکیده

When using a polynomial approximating function the most contentious aspect of the Heat Balance Integral Method is the choice of power of the highest order term. In this paper we employ a method recently developed for thermal problems, where the exponent is determined during the solution process, to analyse Stefan problems. This is achieved by minimising an error function. The solution requires no knowledge of an exact solution and generally produces significantly better results than all previous HBI models. The method is illustrated by first applying it to standard thermal problems. A Stefan problem with an analytical solution is then discussed and results compared to the approximate solution. An ablation problem is also analysed and results compared against a numerical solution. In both examples the agreement is excellent. A Stefan problem where the boundary temperature increases exponentially is analysed. This highlights the difficulties that can be encountered with a time dependent boundary condition. Finally, melting with a time-dependent flux is briefly analysed without applying analytical or numerical results to assess the accuracy. Nomenclature En(t) Least squares error en En(t) = ent α error measure n Exponent in approximating polynomial s(t) Position of melt front t1 Time when ablation begins u(x, t) Temperature β Inverse Stefan number δ(t) Heat penetration depth λ Growth rate s = 2λ √ t

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Standard and Refined Heat Balance Integral Methods to One-Dimensional Stefan Problems

The work in this paper concerns the study of conventional and refined heat balance integral methods for a number of phase change problems. These include standard test problems, both with one and two phase changes, which have exact solutions to enable us to test the accuracy of the approximate solutions. We also consider situations where no analytical solution is available and compare these to n...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

An exponential heat balance integral method

Implementations of the heat balance integral method are discussed in which exponential functions are used in place of the familiar polynomial approximants. The rationale is based upon that of least-squares in that the use of ‘appropriate’ basis functions can enhance solution accuracy. Whilst this is true in principle it is shown that considerable skill must be exercised when deviating from poly...

متن کامل

Newton-Product Integration for a Stefan Problem with Kinetics

Stefan problem with kinetics is reduced to a system of nonlinear Volterra integral equations of second kind and Newton's method is applied to linearize it. Product integration solution of the linear form is found and sufficient conditions for convergence of the numerical method are given. An example is provided to illustrated the applicability of the method.

متن کامل

A study of a Stefan problem governed with space–time fractional derivatives

This paper presents a fractional mathematical model of a one-dimensional phase-change problem (Stefan problem) with a variable latent-heat (a power function of position). This model includes space–time fractional derivatives in the Caputo sense and time-dependent surface-heat flux. An approximate solution of this model is obtained by using the optimal homotopy asymptotic method to find the solu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010